
ARTICLE IN PRESS
0925-2312/$ - se

doi:10.1016/j.ne

�Correspond
E-mail addr

chervas@uco.es

(P.A. Gutiérrez
Neurocomputing 72 (2008) 548–561

www.elsevier.com/locate/neucom
Evolutionary product-unit neural networks classifiers

F.J. Martı́nez-Estudilloa,�, C. Hervás-Martı́nezb, P.A. Gutiérrezb, A.C. Martı́nez-Estudilloa

aDepartment of Management and Quantitative Methods, ETEA, Escritor Castilla Aguayo 4, 14005 Córdoba, Spain
bDepartment of Computer Science and Numerical Analysis, University of Córdoba, Campus de Rabanales, 14071 Córdoba, Spain

Received 13 April 2007; received in revised form 26 October 2007; accepted 25 November 2007

Communicated by G.-B. Huang

Available online 15 January 2008
Abstract

This paper proposes a classification method based on a special class of feed-forward neural network, namely product-unit neural

networks. Product-units are based on multiplicative nodes instead of additive ones, where the nonlinear basis functions express the

possible strong interactions between variables. We apply an evolutionary algorithm to determine the basic structure of the product-unit

model and to estimate the coefficients of the model. We use softmax transformation as the decision rule and the cross-entropy error

function because of its probabilistic interpretation. The approach can be seen as nonlinear multinomial logistic regression where the

parameters are estimated using evolutionary computation. The empirical and specific multiple comparison statistical test results, carried

out over several benchmark data sets and a complex real microbial Listeria growth/no growth problem, show that the proposed model is

promising in terms of its classification accuracy and the number of the model coefficients, yielding a state-of-the-art performance.

r 2008 Elsevier B.V. All rights reserved.

Keywords: Classification; Product-unit neural networks; Evolutionary neural networks
1. Introduction

The simplest method for the classification of patterns
provides the class level given their observations via linear
functions in the predictor variables. This process of model
fitting is quite stable, resulting in low variance but a
potentially high bias. Frequently, in a real-problem of
classification, we cannot make the stringent assumption
of additive and purely linear effects of the variables.
A traditional technique to overcome these difficulties is
augmenting/replacing the input vector with new variables,
the basis functions, which are transformations of the input
variables, and then using linear models in this new space of
derived input features. One first approach is to augment the
inputs with polynomial terms to achieve higher-order
Taylor expansions, for example, with quadratic terms
and multiplicative interactions. Once the number and the
e front matter r 2008 Elsevier B.V. All rights reserved.

ucom.2007.11.019

ing author.

esses: fjmestud@etea.com (F.J. Martı́nez-Estudillo),

(C. Hervás-Martı́nez), i02gupep@uco.es

), acme@etea.com (A.C. Martı́nez-Estudillo).
structure of the basis functions have been determined, the
models are linear in these new variables and their fitting is a
standard procedure. Methods like sigmoidal feed-forward
neural networks [6], projection pursuit learning [23],
generalized additive models [31], and PolyMARS [43], a
hybrid of multivariate adaptive splines (multiadaptive
regression splines, MARS) [22], specifically designed to
handle classification problems, can be seen as different
basis function models. The major drawback of these
approaches is stating the optimal number and typology
of corresponding basis functions.
We tackle this problem proposing a nonlinear model

along with an evolutionary algorithm (EA) that finds the
optimal structure of the model and estimates its corre-
sponding coefficients. Concretely, our approach tries to
overcome the nonlinear effects of the input variables by
means of a model based on nonlinear basis functions
constructed with the product of the inputs raised to
arbitrary powers. These basis functions express possible
strong interactions between the variables, where the
exponents may even take on real values and are suit-
able for automatic adjustment. The model proposed

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2007.11.019
mailto:fjmestud@etea.com
mailto:chervas@uco.es
mailto:i02gupep@uco.es
mailto:i02gupep@uco.es
mailto:acme@etea.com


ARTICLE IN PRESS
F.J. Martı́nez-Estudillo et al. / Neurocomputing 72 (2008) 548–561 549
corresponds to a special class of feed-forward neural
network, namely product-unit based neural networks
(PUNN) introduced by Durbin and Rumelhart [16]. They
are an alternative to sigmoidal neural networks and are
based on multiplicative nodes instead of additive ones.
Unfortunately, the error surface associated with PUNNs is
extremely convoluted with numerous local optima and
plateaus. The main reason for this difficulty is that small
changes in the exponents can cause large changes in the
total error surface. Because of this, their training is more
difficult than the training of standard sigmoidal-based
networks. For example, it is well known [7] that back-
propagation is not efficient in the training of product-units.
Section 3 will briefly show the most relevant techniques
that have been used so far to apply learning methods to
product-unit networks.

On the other hand, the evolutionary approach is used to
optimize both the weights and the architecture of the
network simultaneously. In general, classical neural net-
works training algorithms assume a fixed architecture;
nevertheless, it is very difficult to know beforehand what
the most suitable structure of the network for a given
problem will be. There have been many attempts to design
the architecture automatically, such as constructive and
pruning algorithms [51,56]. We used EAs to design a nearly
optimal neural network architecture because better results
have been obtained using this heuristic [4,62]. This fact,
together with the complexity of the error surface associated
with a PUNN, justifies the use of an EA to design the
topology of the network and to train its corresponding
weights. The evolutionary process determines the number
of basis functions, associated coefficients and correspond-
ing exponents in the model.

We use the softmax activation function and the cross-
entropy error function [6]. Therefore, from a statistical point
of view, the approach can be seen as a nonlinear multinomial
logistic regression [30], where we optimize log-likelihood
using evolutionary computation. Actually, we attempt to
estimate conditional class probabilities using a multilogistic
model with the nonlinear model given by PUNNs.

We evaluate the performance of our methodology on
seven data sets taken from the UCI repository [7], and on a
real microbial growth/no growth problem in order to
determine the growth limits of Listeria monocytogenes

[2,18] to assure microbial safety and quality in foods.
Empirical and statistical test results show that the proposed
method performs well when compared to several other
learning classification techniques. We obtain a classifier
with interesting results in terms of classification accuracy
and number of hidden nodes. Moreover, we show
graphically the classification task carried out by the
product-unit model together with its capability to both
capture the interactions between the variables and to
reduce the dimension of the input space. This reduction of
dimensionality facilitates the study of the behavior of
corresponding basis functions and the relevance of each
input variable in the final model. This paper is organized as
follows: Section 2 shows the main related works; Section 3
is devoted to a description of PUNNs; Section 4 describes
the evolution of PUNNs; Section 5 explains the experi-
ments and the comparison test carried out; and finally,
Section 6 summarizes the conclusions of our work.

2. Related works

We start by giving a brief overview of the different
methods that use basis functions to move beyond linearity.
The first method cited to solve classification problems is
conventional statistical discriminant analysis [30], which
assumes that the measurement vectors in each class follow
a normal multivariate distribution. If the covariance
matrices of the measurements in each class are the same,
the method shows that the regions created by Bayes’
decision rule are separated by boundaries, which are linear
in the input variables. When the conventional assumption
of the equality of covariate matrices is dropped, Bayes’
decision rule gives quadratic boundaries. In many exam-
ples, the inadequacy of linear or quadratic discriminant
analysis for the purpose of classification made it necessary
to look for approaches that could approximate highly
nonlinear class boundaries. Instead of assuming specific
distributions for the inputs and using them to calculate
conditional class probabilities, one can estimate these
classes directly from training sample cases.
A number of methods based on nonparametric regres-

sion [30], which are capable of approximating highly
nonlinear class boundaries in classification problems, have
been developed in the last few years.
Generalized additive models [31] comprise automatic

and flexible statistical methods that may be used to identify
and characterize nonlinear effects. The generalized additive
model approximates multidimensional functions as a sum
of univariate curves. Univariate functions are estimated in
a flexible manner, using an algorithm whose basic building
block is a scatter plot smoother, for example, the cubic
smoothing spline. The additive model manages to retain
interpretability by restricting nonlinear effects in the
predictors in order to enter them into the model
independently of each other. Generalized additive models
provide a natural first approach to relaxing strong linear
assumptions.
Bose [8] presented a method, classification using splines

(CUS), somewhat similar to the neural network method,
which uses additive cubic splines to estimate conditional
class probabilities. Afterwards, the same author presented
a modification of CUS, named ‘‘the method of successive
projections’’, to solve more complex classification problems
[9]. Although this method was presented using CUS, it is
possible to replace CUS by any nonparametric regression-
based classifier.
Kooperberg et al. [43] propose an automatic procedure

that uses linear splines and their tensor products. This
method is a hybrid of the MARS [22] called PolyMars,
specifically designed to handle classification problems. It



ARTICLE IN PRESS
F.J. Martı́nez-Estudillo et al. / Neurocomputing 72 (2008) 548–561550
grows the model in a forward stage-wise fashion like
MARS, but at each stage it uses quadratic approximation
to multinomial log-likelihood to search for the next basis
function pair. Once found, the enlarged model is fit
according to the maximum likelihood method, and the
process is repeated.

From a different point of view, neural networks have
been an object of renewed interest among researchers, both
in statistics and computer science, owing to the significant
results obtained in a wide range of classification problems.
Many different types of neural network architectures have
been used, but the most popular one has been that of the
single-hidden-layer feed-forward network. Amongst the
numerous approaches using neural networks in classifica-
tion problems, we focus our attention on that of evolu-
tionary artificial neural networks (EANNs). EANNs have
been a key research area in the past decade providing a
better platform for simultaneously optimizing both net-
work performance and architecture. Miller et al. [48]
proposed evolutionary computation as a very good
candidate to search the space of architectures because the
fitness function associated with that space is complex,
noisy, nondifferentiable, multimodal and deceptive. Since
then, many evolutionary methods have been developed to
evolve artificial neural networks, see, for example,
[12,19,24,52,60,62,63]. In these works we find several
methods that combine architectural evolution with weight
learning and use different mutation operators, including, in
some cases, partial training after each architectural
mutation or approaches that hybridize EANNs with a
local search technique to improve the slowness of the
convergence. The problem of finding suitable architecture
and the corresponding weights of the network is a very
complex task (for a very interesting review of the matter
the reader can consult [61]). Among the EANN paradigm it
is worthwhile to point out two different approaches.
Cooperative co-evolution [50] is a recent paradigm in the
area of evolutionary computation focused on the evolution
of co-adapted subcomponents without external interaction
[24]. COVNET is a new cooperative co-evolutionary model
for evolving artificial neural networks [25]. The method is
based on the idea of co-evolving subnetworks that must
cooperate to form a solution for a specific problem, instead
of evolving complete networks.

On the other hand, multiobjective evolutionary optimi-
zation has recently appeared as an enhanced approach to
optimize both the structure and weights of the neural
network [5,27]. The idea of designing neural networks
within a multiobjective setup was first considered by
Abbass in [1]. Here, the multiobjective problem formula-
tion essentially involves setting up two objectives: complex-
ity of the network (number of weights, number of
connections or a combination of both) and the training
error. Finally, an interesting idea has been developed in
subsequent works related to the topic of network
ensembles [11,13,14]. In these papers, the authors tackle
the ensemble-learning problem within a multiobjective
setup where diversity and accuracy objectives are in conflict
and the evolutionary process searches for a good trade-off
between them.
Finally, a new learning algorithm called extreme learning

machine (ELM) for single hidden-layer feed-forward
neural networks has been recently proposed [35,36]. This
novel procedure, unlike the conventional implementations
of gradient-based learning algorithms, chooses randomly
hidden nodes and analytically determines the output
weights of the network. This algorithm provides good
generalization performances at extremely fast learning
speeds and it has been proved in theory that the universal
approximator property holds [34]. However, ELM may
need a higher number of hidden nodes due to random
determination of input weights and hidden biases. Several
algorithms based on the ELM method (hybrid proposals
which use the differential evolution algorithm [64] and a
convex optimization method [33]) have been developed to
achieve good generalization performances with more
compact networks.
3. Product-unit neural networks

In this section we present the family of product-unit
basis functions used in the classification process and its
representation by means of a neural network structure.
This class of multiplicative neural networks comprises such
types as sigma–pi networks and product-unit networks.
A multiplicative node is given by

yj ¼
Yk

i¼1

x
wji

i , (1)

where k is the number of the inputs. If the exponents wji in
(1) are {0,1} we obtain a higher-order unit, also known as
sigma–pi unit. In contrast to the sigma–pi unit, in the
product-unit the exponents are not fixed and may even take
real values.
Some advantages of PUNNs are their increased infor-

mation capacity and ability to form higher-order input
combinations. Durbin and Rumelhart [16] determined
empirically that the information capacity of product-units
(measured by their capacity for learning random Boolean
patterns) is approximately 3N, as compared to 2N in a
network with additive units for a single threshold logic
function, where N denotes the number of inputs to the
network. Besides, it is possible to obtain the upper bounds
of the VC dimension [58] in PUNNs similar to those
obtained in sigmoidal neural networks [55]. Schmitt [55]
derives the upper bounds of the VC dimension and the
pseudo-dimension for various types of networks with
multiplicative units. As the most general case, Schmitt
[55] considers feed-forward networks consisting of product
and sigmoidal units, and showing that their pseudo-
dimension is bounded from above by a polynomial with
the same order of magnitude as the currently best known
bound for purely sigmoidal networks. Concretely, he shows



ARTICLE IN PRESS

Fig. 1. Model of a product-unit neural network.

F.J. Martı́nez-Estudillo et al. / Neurocomputing 72 (2008) 548–561 551
that a product-unit network has a pseudo-dimension at
least O(W2k2), where the number of parameters is W and k

is the number of hidden nodes (see Theorem 1 and
Corollary 2). As a consequence, the complexity of a
PUNN (from the point of view of the VC dimension or the
pseudo-dimension) depends on the number of parameters
and the number of hidden nodes instead of on the values of
the weights.

Finally, it is a straightforward consequence of the
Stone–Weierstrass theorem to prove that PUNNs are
universal approximators [46] (observe that polynomial
functions in several variables are a subset of product-unit
models).

Despite these advantages, PUNNs have a major draw-
back. They have more local minima and a higher
probability of becoming trapped in them [38]. Several
efforts have been made to carry out learning methods for
product-units. Janson and Frenzel [41] developed a genetic
algorithm for evolving the weights of a network based on
product-units with a predefined architecture. The major
problem with this kind of algorithm is how to obtain the
optimal architecture beforehand. Ismail and Engelbrecht
[38,39] applied four different optimization methods to train
PUNNs: random search, particle swarm optimization,
genetic algorithms and leapfrog optimization. They con-
cluded that random search is not efficient for training this
type of network, and that the other three methods show an
acceptable performance in three problems of function
approximation with low dimensionality. In a later paper
[40] they used a pruning algorithm to develop both the
structure and the training of the weights in a PUNN.
Leerink et al. [44] tested different local and global
optimization methods for PUNNs. Their results show that
local methods, such as back-propagation, are prone to be
trapped in local minima, and that global optimization
methods, such as simulated annealing and random search,
are impractical for larger networks. They suggested some
heuristics to improve back-propagation, and the combina-
tion of local and global search methods. In short, the
studies carried out on PUNNs have not tackled the
problem of the simultaneous design of the structure and
weights in this kind of neural network, using either classical
or evolutionary based methods. Moreover, PUNNs have
been applied mainly to solve regression problems so far
[17,46,47,53,54].

On the other hand, it is interesting to note that a
problem arises with networks containing product-units
that receive negative inputs and have weights that are not
integers. A negative number raised to some noninteger
power yields a complex number. Since neural networks
with complex outputs are rarely used in applications,
Durbin and Rumelhart [16] suggest discarding the imagin-
ary part and using only the real component for further
processing. This manipulation would have disastrous
consequences for the VC dimension when we consider
real-valued inputs. No finite dimension bounds can, in
general, be derived for networks containing such units [55].
To avoid this problem, the input domain is restricted, and
we define the set given by fx ¼ ðx1;x2; :::; xkÞ 2 Rk : xi40;
i ¼ 1; 2; . . . ; kg.
We consider a PUNN with the following structure (Fig.

1): an input layer with k nodes, a node for every input
variable, a hidden layer with m nodes and an output layer
with J nodes, one for each class level. There are no
connections between the nodes of a layer, and none
between the input and output layers either. The activation
function of the jth node in the hidden layer is given by
Bjðx;wjÞ ¼

Qk
i¼1x

wji

i ; where wji is the weight of the connec-
tion between input node i and hidden node j and wj ¼

ðwj1; . . . ;wjkÞ the weights vector. The activation function of
the output node l is given by bl

0 þ
Pm

j¼1b
l
jBðx;wjÞ, where b

l
j

is the weight of the connection between the hidden node j

and the output node l and bl
0 the corresponding bias. The

transfer function of all hidden and output nodes is the
identity function. In this way, the estimated function
f lðx; hlÞ from each output is given by

f lðx; hlÞ ¼ bl
0 þ

Xm

j¼1

bl
jBjðx;wjÞ; l ¼ 1; 2; . . . ; J, (2)

where hl ¼ ðb
l ;w1; . . . ;wmÞ and bl ¼ ðbl

0;b
l
1; . . . ;b

l
mÞ:
4. Classification problem

In a classification problem, measurements xi, i ¼

1,2,y,k, are taken on a single individual (or object), and
the individuals are to be classified into one of the J classes
based on these measurements. It is assumed that J is finite,
and the measurements xi are random observations from
these classes.
A training sample D ¼ fðxn; ynÞ; n ¼ 1; 2; . . . ;Ng is avail-

able, where xn ¼ ðx1n; . . . ;xknÞ is the random vector of
measurements taking values in O � Rk, and yn is the class



ARTICLE IN PRESS
F.J. Martı́nez-Estudillo et al. / Neurocomputing 72 (2008) 548–561552
level of the n-th individual. We adopt the common
technique of representing the class levels using a ‘‘1-of-J’’
encoding vector y ¼ ðyð1Þ; yð2Þ; . . . ; yðJÞÞ, such as y(l) ¼ 1 if x
corresponds to an example belonging to class l, and
otherwise y(1) ¼ 0. Based on the training sample we wish to
find a decision function C : O! f1; 2; . . . ; Jg for classifying
individuals. In other words, O provides a partition, say
D1,D2,y,DJ, of O, where Dl corresponds to the l class,
l ¼ 1,2,y,J, and measurements belonging to Dl will be
classified as coming from the l-th class. A misclassification
occurs when a decision rule O assigns an individual (based
on measurements vector) to a class j when it actually comes
from a class l 6¼j. We define the corrected classification rate
(CCR) by CCR ¼ ð1=NÞ

PN
n¼1IðCðxnÞ ¼ ynÞ, where I(d) is

the zero-one loss function. A good classifier tries to achieve
the highest possible CCR in a given problem.

We consider the softmax activation function [6] given by

glðx; hlÞ ¼
exp f lðx; hlÞPJ

l¼1 exp f lðx; hlÞ
; l ¼ 1; 2; . . . ; J. (3)

If we use the training data set D ¼ fðxn; ynÞg; where
xin40 8i,n, then the cross-entropy error function (K-class
multinomial deviance) for those observations is

lðhÞ ¼ �
1

N

XN

n¼1

XJ

l¼1

yðlÞn log glðxn; hlÞ

¼
1

N

XN

n¼1

�
XJ

l¼1

yðlÞn f lðxn; hlÞ þ log
XJ

l¼1

exp f lðxn; hlÞ

" #
,

(4)

where h ¼ (h1,y,hJ). The error surface associated with the
model is very convoluted with numerous local optimums and
the Hessian matrix of the error function l(h) is, in general,
indefinite. Moreover, the optimal number of basis functions
in the model (i.e. the number of hidden nodes in the neural
network) is unknown. Thus, we determine the estimation of
the vector parameters ĥ by means of an EA (see Section 5).

The optimum rule C(x) is the following:

CðxÞ ¼ l̂; where l̂ ¼ arg max
l

glðx; ĥÞ,

for l ¼ 1; 2; . . . ; J. (5)

From a statistical point of view, with the softmax
activation function (3) and the cross-entropy error (4), the
neural network model can be seen as a multilogistic
regression model. Nevertheless, the nonlinearity of the
model with respect to the parameters hj and the indefinite
character of the associated Hessian matrix do not
recommend the use of gradient-based methods (for
example, iteratively reweighted least squares (IRLS)
commonly used in the optimization of log-likelihood in
linear multinomial logistic regression) to minimize the
negative log-likelihood function.

Observe that softmax transformation produces positive
estimates that sum to one and, therefore, the outputs can
be interpreted as conditional probability of class member-
ship. Specifically, the probability that x belongs to class l is
written as

pðyðlÞ ¼ 1jx; hjÞ ¼ glðx; hlÞ; l ¼ 1; 2; . . . ; J (6)

and the classification rule (5) coincides with the optimal
Bayes rule. In other words, an individual should be
assigned to the class which has the maximum probability,
given vector measurement x. On the other hand, because of
the normalization condition

XJ

l¼1

pðyðlÞ ¼ 1jx; hlÞ ¼ 1, (7)

the probability for one of the classes does not need to be
estimated. There is a redundancy in the functions fl(x,hl),
since adding an arbitrary h(x) to each output leaves the
model (3) unchanged. Traditionally one of them is set to
zero and we reduce the number of parameters to estimate.
With loss generality, we set fJ(x,hJ) ¼ 0.

5. Evolutionary algorithm

We apply an evolutionary neural networks algorithm to
estimate the parameter that minimizes the cross-entropy
error function. EA designs the structure and learns the
weights of PUNNs. The search begins with an initial
population of PUNNs, and in each iteration the popula-
tion is updated using a population-update algorithm. The
population is subjected to the operations of replication and
mutation. Crossover is not used due to its potential
disadvantages in evolving artificial networks [4,62]. With
these features the algorithm falls into the class of
evolutionary programming [20,21]. The general structure
of EA is similar to the one presented in [32]:
(1)
 Generate a random population of size NP.

(2)
 Repeat until the stopping criterion is fulfilled.

(a) Calculate the fitness of every individual in the
population.

(b) Rank the individuals with respect to their fitness.
(c) The best individual is copied into the new population.
(d) The best 10% of population individuals are repli-

cated and substitute the worst 10% of individuals.
Over that intermediate population we

(e) Apply parametric mutation to the best 10% of
individuals.

(f) Apply structural mutation to the remaining 90% of
individuals.
In the current approach, l(h) is the error function of an
individual g of the population, where g is a PUNN given by
the multivaluated function gðx; hÞ ¼ ðg1ðx; h1Þ; . . . ; glðx; hlÞÞ

and the fitness measure is a strictly decreasing transforma-
tion of the error function, l(h) given by AðgÞ ¼ 1=ð1þ lðhÞÞ.
Parametric mutation is accomplished for each coefficient

wji, bl
j of the model with Gaussian noise, where the

variances of the normal distribution are updated through-
out the evolution of the algorithm. Once the mutation is



ARTICLE IN PRESS
F.J. Martı́nez-Estudillo et al. / Neurocomputing 72 (2008) 548–561 553
performed, the fitness of the individual is recalculated and
the usual simulated annealing process [42,49] is applied. On
the other hand, structural mutation implies a modification
in the neural network structure and allows explorations of
different regions in the search space while helping to keep
up the diversity of the population. There are five different
structural mutations: node deletion, connection deletion,
node addition, connection addition and node fusion. These
five mutations are applied sequentially to each network.
For further details about the parametric and structural
mutations see [32,46].

The stop criterion is reached if one of the following
conditions is fulfilled: a number of generations are reached
or the variance of the fitness of the best 10% of the
population is less than 10�4.

The parameters used in EA are common for all
problems. The exponents wji are initialized in the [�5,5]
interval, the coefficients bl

j are initialized in [�5,5]. The
maximum number of hidden nodes is m=6. The size of the
population is NP=1000. The number of nodes that can be
added or removed in a structural mutation is within the
[1,2] interval. The number of connections that can be added
or removed in a structural mutation is within the [1,c]
interval, where c is a third of the number of connections of
the model. We consider 400 as the maximum number of
generations.

We have done a simple linear rescaling of the input
variables in the interval [1,2], X �i being the transformed
variables. The lower bound is chosen to avoid input values
near 0, which can produce very large values of the outputs
for negative exponents. The upper bound is chosen to
avoid dramatic changes in the outputs of the network when
there are weights with large values (especially in the
exponents).

6. Experiments

In this section we compare the Evolutionary Product
Unit Neural Network method (EPUNN) with different
evolutionary neural network learning algorithms. First of
all, in order to show the abilities of the product-unit
models, we run the same evolutionary setup with standard
neural networks with sigmoidal units, and we compare the
Table 1

Data sets used for the experiments, sorted by size

Data sets Instances Missing values (%) Numeric att

Heart-statlog 270 0.0 13

Ionosphere 351 0.0 33

Balance 625 0.0 4

Australian 690 0.6a 6

Diabetes 768 0.0 8

German 1000 0.0 6

Hypothyroid 3772 5.5a 7

aWe have used original data sets without transforming the missing values.
results of the models based on multiplicative units against
additive unit models. Next, we compare our model
EPUNN to COVNET, a new cooperative co-evolutionary
neural network method. Afterwards, the comparison is
made with respect to two recent approaches based on
multiobjective evolutionary neural networks: MPANN and
SPANN. Furthermore, we analyze in detail two classifica-
tion models obtained by EA in two data sets, to show
graphically the task of classification carried out by the
product-unit model and how well it can capture the inter-
actions between the variables as well as reduce the
dimension of the input space. Finally, the performance of
our model is tested in a complex real microbial Listeria

growth/no growth problem.
The different experiments were conducted using a software

package developed in JAVA by the authors as an extension
of JCLEC framework (http://jclec.sourceforge.net/) [59]. The
software package is available in the noncommercial JAVA
tool named KEEL (http://www.keel.es) [3].
6.1. Neural network models comparisons

6.1.1. Product-units versus additive sigmoidal units

In order to justify the benefits of applying the product-
unit model, we evolve the traditional feed-forward neural
networks with sigmoidal additive units with the same EA.
This approach will be known as evolutionary sigmoidal
unit neural networks (ESUNN). The same evolutionary
setup (EA and parameters) will be considered for the
EPUNN and ESUNN models in seven classification
problems with different features (see Table 1). The seven
data sets are available by anonymous ftp from [7].
We use a 10-fold stratified cross-validation and we carry

out 10 runs of each fold for every data set. This gives a 100
data points for each data set, from which the average
classification accuracy in the generalization set (CCRG)
and standard deviation are calculated.
The comparison between the predictive ability of the two

models of artificial neural networks (EPUNN and
ESUNN) was carried out using statistical tests in terms
of accuracy (mean of the correct classification rate, CCRG),
homogeneity (standard deviation, SD, of the CCRG), best
ributes Binary attributes Nominal attributes Classes

0 0 2

1 0 2

0 0 3

4 5 2

0 0 2

3 11 2

20 2 4

http://jclec.sourceforge.net/
http://www.keel.es


ARTICLE IN PRESS

Table 4

Statistical comparison (p-Values of the Levene and Student’s t-tests or

Mann–Whitney test (M–W)) of the generalization ability (CCRG) and

number of connections (# Conn.) for EPUNN and ESUNN models

EPUNN versus

ESUNN

CCRG ] Conn.

Levene

test

t-Test or

M–W test

Levene

test

t-Test

Heart-statlog – 0.525 0.000 0.000a

Ionosphere – 0.185 0.000 0.149

Balance – 0.000a 0.300 0.000a

Australian – 0.525 0.003 0.009a

Diabetes 0.086 0.047a 0.082 0.010a

German 0.129 0.000a 0.080 0.000a

Hypothyroid 0.080 0.618 0.212 0.001a

aThere are significant differences on average using a significance level

a ¼ 0.05.

F.J. Martı́nez-Estudillo et al. / Neurocomputing 72 (2008) 548–561554
and worst results and topology (mean and SD of the
number of connections). See Table 2.

First, we study the normality of CCRG and the number
of connections by means of a Kolmogorov–Smyrnov test
[10]. For this and the remaining comparisons, all tests were
obtained using the SPSS statistical package [57].

From the results for CCRG (see Table 3) a normal
distribution can be assumed for Diabetes, German and
Hypothyroid because the observed significance levels,
p-Values, were higher than the significance level of the
test, a ¼ 0.05. The normality hypothesis of the accuracy
distribution cannot be assumed in Heart-statlog, Iono-
sphere, Balance, and Australian data sets. Regarding the
number of connections, it is possible to assume the normal
distribution hypothesis in all cases because p-Values were
higher than 0.05. Therefore, under the hypothesis of
normal distribution, the comparisons between EPUNN
and ESUNN models were done by using the t-test for equal
or different variance, according to the results previously
obtained by the Levene test [45], in both cases with
a ¼ 0.05. On the other hand, we use a nonparametric
Mann–Whitney test [10] for differences between means in
the non-normal distribution hypothesis. The statistical
results obtained are shown in Table 4. We observe signi-
ficant differences, in favor of EPUNN, at a significance
Table 2

Statistical results for EPUNN and ESUNN in seven data sets

Data sets Training G

Mean SD Best Worst M

ESUNN

Heart-statlog 86.21 1.15 88.89 83.54 83

Ionosphere 91.75 1.36 94.30 88.29 88

Balance 92.38 1.22 95.74 90.05 91

Australian 87.81 0.81 90.02 85.35 85

Diabetes 79.15 0.75 80.78 77.75 75

German 77.32 1.52 79.67 73.22 73

Hypothyroid 94.34 0.23 94.82 93.76 94

EPUNN

Heart-statlog 84.65 1.63 88.48 80.25 81

Ionosphere 93.79 1.46 97.15 90.19 89

Balance 97.26 0.98 99.47 94.32 95

Australian 87.01 0.82 88.57 85.02 85

Diabetes 77.79 0.75 79.62 76.16 77

German 77.33 1.34 80.56 73.56 76

Hypothyroid 94.51 0.55 96.97 93.64 94

Table 3

Normality Kolmogorov–Smirnov test of the generalization ability (CCRG) an

K–S test Heart-statlog Ionosphere Balance Au

EPUNN ESUNN EPUNN ESUNN EPUNN ESUNN EP

p-Value CCRG 0.010a 0.001a 0.066 0.018a 0.002a 0.010a 0.0

p-Value # Conn. 0.222 0.157 0.602 0.465 0.108 0.205 0.4

aNon-Gaussian distribution for a significance level a ¼ 0.05.
level a ¼ 0.05 in Balance, Diabetes and German data sets
in CCRG results, while there are not significant differences
in the remaining ones. As for the number of connections,
there are a significantly lower number of connections for
EPUNN in the Heart-statlog, Balance, Australian and
Hypothyroid data sets, and there are a significantly lower
eneralization ] Conn.

ean SD Best Worst Mean SD

.22 6.61 92.59 66.67 16.99 2.52

.66 5.22 100.00 74.29 46.35 8.80

.03 4.15 98.39 79.03 30.31 2.33

.49 3.92 94.20 78.26 49.58 12.66

.93 5.25 84.21 63.16 17.02 3.00

.00 5.56 86.00 60.00 62.84 13.96

.18 0.95 96.02 92.57 76.73 11.30

.89 6.90 96.30 62.96 14.78 3.83

.63 5.52 100.00 74.29 43.97 13.87

.69 2.36 100.00 90.32 25.62 2.18

.74 3.90 95.65 78.26 44.13 16.26

.40 4.38 84.21 68.42 18.08 2.31

.28 4.82 90.00 65.00 74.16 18.82

.25 1.08 96.55 92.31 71.13 12.69

d number of connections (# Conn.) for EPUNN and ESUNN models

stralian Diabetes German Hypothyroid

UNN ESUNN EPUNN ESUNN EPUNN ESUNN EPUNN ESUNN

34a 0.255 0.330 0.304 0.647 0.522 0.123 0.076

36 0.689 0.492 0.080 0.624 0.354 0.108 0.205



ARTICLE IN PRESS
F.J. Martı́nez-Estudillo et al. / Neurocomputing 72 (2008) 548–561 555
number of connections for ESUNN in the Diabetes and
German ones, using a significance level a ¼ 0.05

We conclude that for the Heart-statlog, Australian and
Hypothyroid data sets, the models using EPUNN have a
significantly lower number of connections without signifi-
cantly worsening or improving the mean value of CCRG, as
compared to those found with the ESUNN model.

For the Ionosphere data set there are no significant
differences in the CCRG and in the number of connections
with respect to the type of base functions used.

The Balance data set has a significantly higher mean
CCRG value when using EPUNN models than when using
ESUNN models; these models also manifesting a signifi-
cantly lower mean number of connections. For Diabetes
and German data sets the mean CCRG values obtained
with EPUNN models are significantly higher than when
ESUNN models are used, although the mean number of
connections is also significantly higher in the EPUNN
models.
6.1.2. Comparison with a cooperative co-evolutionary neural

network method: COVNET

In this section we compare our approach with COVNET,
a new cooperative co-evolutionary model for evolving
artificial neural networks [25]. The method is based on the
idea of co-evolving subnetworks that must cooperate to
Table 5

Statistical results for EPUNN and COVNET in three data sets

Data sets Partition Algorithm Training

Mean SD Best

Diabetes I COVNET 77.74 0.73 78.65

EPUNN 77.48 0.91 78.99

II COVNET 77.31 0.70 78.30

EPUNN 76.82 0.56 78.99

III COVNET 77.57 0.42 78.12

EPUNN 76.91 0.61 78.47

All COVNET 77.54 0.63 –

EPUNN 77.07 0.75 –

Heart disease I COVNET 87.43 0.63 88.61

EPUNN 86.63 0.70 87.13

II COVNET 86.34 1.42 89.11

EPUNN 83.76 1.04 87.129

III COVNET 86.88 0.75 87.62

EPUNN 85.55 1.21 87.62

All COVNET 86.88 1.06 –

EPUNN 85.31 1.55 –

Australian I COVNET 86.25 0.75 87.45

EPUNN 84.17 0.32 84.36

II COVNET 85.69 0.92 87.64

EPUNN 84.40 0.30 84.94

III COVNET 85.89 0.59 86.87

EPUNN 84.48 0.24 84.94

All COVNET 85.95 0.78 –

EPUNN 85.24 0.64 –
form a solution for a specific problem, instead of evolving
complete networks.
To be consistent with [25], the comparison is tested on

three classification data sets: Diabetes, Australian and
Heart disease. The features of Diabetes and Australian
data sets can be seen in Table 1. Heart disease is a data set
from the Cleveland Clinic Foundation and contains 13
attributes, 5 classes and 270 examples (the problem is
described more deeply in [15]). We have carried out the
same experimental design: 75% of patterns of each data set
were used for training purposes and the remaining 25%
were used as generalization assessment set. Three different
random permutations of the patterns were made, and the
evolutionary process was repeated 10 times for each
permutation.
Table 5 shows, for each permutation of the data sets, the

averaged CCR over 10 repetitions for training and
generalization sets, the standard deviation, the best and
worst individuals, and the mean and standard deviation of
the number of connections of the best networks obtained
for each experiment. Each permutation of the data set is
labelled I, II and III in the table. The mean results over the
three permutations are labelled All.
In order to verify the true difference between the

performance in EPUNN and the COVNET network, we
conducted statistical tests (see Table 6). First, we corrobo-
rated by means of a Kolmogorov–Smyrnov test that the
Generalization ] Conn.

Worst Mean SD Best Worst Mean SD

76.56 80.05 2.84 83.85 75.52 – –

76.22 79.84 0.95 81.25 78.65 20.43 2.80

76.04 79.37 2.36 82.29 76.04 – –

75.87 81.30 0.79 82.29 80.21 20.90 2.77

76.74 80.89 0.82 82.29 79.69 – –

76.39 82.03 1.21 84.38 80.73 21.42 2.91

– 80.10 2.20 – – 24.60 –

– 81.06 1.34 – – 20.94 2.76

86.63 85 1.35 86.76 82.35 – –

85.64 86.62 1.29 88.24 83.82 25.61 3.81

84.16 87.94 2.17 91.18 85.29 – –

82.18 90.88 1.52 94.12 88.24 28.20 4.10

85.64 84.26 3.18 88.24 79.41 – –

84.16 83.52 1.67 85.29 80.88 27.30 2.26

– 85.74 2.79 – – 33.07 –

– 87.01 3.39 – – 27.03 3.54

84.94 88.02 0.88 88.95 86.05 – –

83.59 88.66 0.63 88.95 87.21 11.31 11.84

84.36 88.95 1.19 90.71 86.63 – –

83.78 88.84 0.25 88.95 88.37 3.97 1.37

85.14 88.31 0.89 89.53 86.63 – –

84.36 88.72 0.30 88.95 88.37 6.40 4.95

– 88.43 1.04 – – 34.23 –

– 88.55 1.17 – – 31.40 12.16



ARTICLE IN PRESS

Table 6

Statistical test in three data sets

Data sets Partition K–S (p-Values) t-Test (p-Values)

Diabetes All 0.637 0.046a

Heart disease All 0.702 0.125

Australian All 0.061 0.685

aThere are significant differences between the EPUNN and the

COVNET means, for a ¼ 0.05.

Table 7

Mean classification accuracy and standard deviation for generalization

CCRG for MPANN, SPANN and EPUNN

MPANN SPANN EPUNN

Australian

Test error rate 86.4074.50 86.9074.60 85.7473.90

Hidden units 5.0071.94 6.0071.83 2.9070.09

Diabetes

Test error rate 74.9076.20 70.7075.00 77.8973.48

Hidden units 6.6071.51 7.1772.21 2.9870.14

1The folds used in the cross-validation experiments and the EPUNN

models obtained are available for the reader in http://www.uco.es/grupos/

ayrna/.

F.J. Martı́nez-Estudillo et al. / Neurocomputing 72 (2008) 548–561556
distribution of the CCRG values is normal; p-Values in the
table are higher than a ¼ 0.05, and in this way, the
normality hypothesis for the distribution of the CCRG

obtained using EPUNN is accepted. In [25], the normality
hypothesis for the distribution of the CCRG values for
COVNET is accepted using the Kolmogorov–Smyrnov
test, regarding p-Values presented for Diabetes data set
(a ¼ 0.44), for Heart disease data set (a ¼ 0.07), and for
Australian data set, (a ¼ 0.56). Then, we tested the
hypothesis that the means of the CCRG obtained from
the experiments with EPUNN and COVNET networks do
not result in significant differences, and therefore we
performed a t-test that allowed us to ascertain if the mean
of the CCRG obtained with EPUNN was significantly
higher than the mean of the CCRG obtained with the
COVNET network at a significance level a ¼ 0.05.

Table 6 shows that, when we consider the 30 results
obtained in the three folds, the improvements on mean for
the CCRG of EPUNN are significant in Diabetes (for
a ¼ 0.05), while there are not significant differences for the
Australian and Heart disease data sets.

6.1.3. Multiobjective neural networks

Now we compare our proposal with some of the most
recent algorithms that use the evolutionary neural network
paradigm: MPANN (memetic pareto artificial neural net-
work) and SPANN (a self-adaptive version of MPANN)
[1]. We have tested EPUNN on two benchmark problems
used in the references quoted: the Australian credit card
assessment problem and the Diabetes problem. To be
consistent with [1,13], we use a 10-fold stratified cross-
validation for the Australian data set and a 12-fold
stratified cross-validation for the Diabetes data set. For
every data set we performed 10 runs of each fold. This gives
100 data points for the Australian, and 120 for the
Diabetes data set, from which the average classification
accuracy CCRG and the standard deviation are calculated.

We carry out a standard comparison test to verify if
there are significant differences in the CCRG when
comparing the EPUNN model to MPANN/SPANN
methodologies. Following the hypothesis of the normality
of the results, we carry out a t-test to compare the mean
results of CCRG in the EPUNN and MPANN/SPANN
methodologies. We use the mean and standard deviation of
the (100, 120) runs for MPANN and SPANN, 10 for each
fold, and (100, 120) runs for EPUNN, 10 for each fold.
Table 7 shows the statistical results of EPUNN, MPANN
and SPANN for Australian and Diabetes data sets. The p-
Values obtained for Australian (0.276 for MPANN and
0.058 for SPANN) and for Diabetes (0.000 for MPANN
and 0.000 for SPANN) show that there are no significant
differences between the mean results for MPANN and
EPUNN algorithms and for SPANN and EPUNN in the
Australian data set for a significant coefficient a ¼ 0.05;
but there are significant differences between the mean
results for MPANN and EPUNN algorithms and for
SPANN and EPUNN in the Diabetes data set for the same
significant coefficient. We conclude that in the latter data
set, the EPUNN mean is higher than the MPANN and
SPANN means. Moreover, there are differences between
the EPUNN model and the MPANN and SPANN
methodologies with respect to the number of hidden nodes
in both databases, where this number is lower for EPUNN.
Table 7 shows that the models constructed by EPUNN are
smaller than the models built by the other algorithms.
Therefore, the experiments show that the EPUNN algo-
rithm produces models with an interesting trade-off
between the accuracy and complexity of the classifier,
determined by the low number of hidden nodes, possibly
outperforming its interpretability.
Now we study in detail the best product-unit model

obtained for the Australian and Diabetes data sets. For the
Diabetes data set, we consider the best model of one of the
10-fold used in the experiments (specifically the seventh
fold). These models can be easily implemented and the
reader can reproduce and compare the results.1

The model for the Diabetes data set is determined by
three basis functions:

B1 ¼ ðX
�
2Þ

2:749
ðX �6Þ

0:528,

B2 ¼ ðX
�
1Þ
�1:0785

ðX�3Þ
1:672
ðX �5Þ

0:904
ðX �6Þ

�3:319
ðX�7Þ

�1:349
ðX �8Þ

�1:662,

B3 ¼ ðX
�
1Þ

2:296
ðX �2Þ

�4:677
ðX �4Þ

0:634
ðX �6Þ

3:682
ðX �7Þ

2:832,

and the output of the softmax transformation is

ĝ1ðxÞ ¼
expf�4:179þ 0:961B1 � 4:569B2 þ 0:262B3g

1þ expf�4:179þ 0:961B1 � 4:569B2 þ 0:262B3g
.

http://www.uco.es/grupos/ayrna/
http://www.uco.es/grupos/ayrna/


ARTICLE IN PRESS
F.J. Martı́nez-Estudillo et al. / Neurocomputing 72 (2008) 548–561 557
By using the properties of the softmax, the decision rule
can be expressed in a more simplified way:

CðxÞ ¼
1 if 0:961B1 � 4:569B2 þ 0:262B344:179;

0 if 0:961B1 � 4:569B2 þ 0:262B3o4:179:

(

If we observe the best model obtained for the Diabetes
data set, and taking into account that the transformed
variables X �i take values in the same interval ½1; 2�, we see
that the most relevant variables are X2, X6 and X7; likewise,
X4 is the least important variable in the model.

On the other hand, we observe that the product-unit
model transforms the eight-dimensional input space into a
three-dimensional space given by the basis functions B1(x),
B2(x), and B3(x). The model tries to capture the interac-
tions among the variables and carries out a reduction in the
dimensionality of the space. It is interesting to point out
that this reduction allows us to depict the separation of the
two classes into training and test points by means of linear
functions in the transformed space. Fig. 2 shows the
graphics for the training and test points for the Diabetes
data set problem and the plane that separates the points in
the two classes.

A similar analysis can be carried out for the Australian
data set. We consider the best model of one of the 10-fold
used in the experiments (the first fold) given by the two
basis functions:

B1 ¼ ðX
�
9Þ

0:783
ðX �11Þ

3:142
ðX �12Þ

0:426
ðX �18Þ

0:661
ðX �26Þ

1:065

ðX �42Þ
2:745
ðX �43Þ

0:419
ðX �45Þ

0:112
ðX �49Þ

�2:320
ðX �51Þ

0:858,
Fig. 2. Graphics of training and test points and decis
B2 ¼ ðX
�
1Þ
�2:687
ðX �3Þ

�2:005
ðX �4Þ

�2:871
ðX �6Þ

2:676
ðX �9Þ

4:618

ðX �14Þ
1:935
ðX �15Þ

�1:099
ðX �16Þ

�2:957
ðX �17Þ

3:366
ðX �25Þ

3:688

ðX �27Þ
4:551
ðX �28Þ

1:164
ðX �30Þ

�1:679
ðX �38Þ

�0:029
ðX �39Þ

1:510

ðX �40Þ
3:462
ðX �41Þ

�2:613
ðX �42Þ

2:415
ðX �43Þ

�4:390
ðX �46Þ

�4:592

ðX �47Þ
�0:070

and the output of the softmax transformation is

ĝ1ðxÞ ¼
expf�3:230þ 0:416B1 þ 0:119B2g

1þ expf�3:230þ 0:416B1 þ 0:119B2g
.

The decision rule can be expressed as

CðxÞ ¼
1 if 0:416B1 þ 0:119B243:230;

0 if 0:416B1 þ 0:119B2o3:230:

(

Fig. 3 shows the training and test points graphics for the
Australian data set problem and the linear decision
boundary that separates the points in the two classes.
Observe that we have carried out a logarithmic transfor-
mation in the vertical axis to improve the graph. It is
important to point out that, in this case, the product-unit
model projects the 50-dimensional input space onto a two-
dimensional space given by the basis functions B1(x) and
B2(x). This reduction allows us a graphical analysis of the
classification problem, facilitating the study of basis
function behavior as well as the relevance of the input
variables in the model. For example, the graphics for the
Australian data set show that the basis function B1(x) is
more important than the B2(x) ones in the model. Taking
into account, again, that the transformed variables X �i take
values in the same interval ½1; 2�, we can see that the most
ion boundary for the Diabetes data set problem.



ARTICLE IN PRESS

Training

b1
403020100

ln
 (b

2)

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

Class 1
Class 2
Class 1 Error
Class 2 Error
Decision boundary

Testing

b1
0

ln
 (b

2)

e-11
e-10
e-9
e-8
e-7
e-6
e-5
e-4
e-3
e-2
e-1
e0
e1
e2
e3

Class 1
Class 2
Class 1 Error
Class 2 Error
Decision boundary

5 10 15 20 25

Fig. 3. Graphics of training and test points and decision boundary for the Australian data set problem.

F.J. Martı́nez-Estudillo et al. / Neurocomputing 72 (2008) 548–561558
relevant variables are X11 and X42. Moreover, a value of
B1(x) higher than 7 provides us with a simple and accurate
rule of classification (see Fig. 3). Observe that the graphical
study above can be carried out when the final model has
two or three nodes in the hidden layer.

6.2. A real classification problem: Listeria growth/no

growth

The main purpose of this section is to present and
compare the efficacy, in terms of good classification, of
different logistic regression approaches and the EPUNN
on a data set of L. monocytogenes growth prediction, as a
function of storage temperature T, pH, citric acid (CA) and
ascorbic acid (AA).

L. monocytogenes has been a serious problem that has
concerned food industries due to its ubiquity in the natural
environment [2,37] and the specific growth conditions of
the pathogen, which lead to its high prevalence in different
kinds of food products. One impetus for this research was
the problem of listeriosis [26]; so different strategies have
been proposed to limit levels of contamination at the time
of consumption to less than 100CFU/g [18].
A fractional factorial design was followed in order to find

the growth limits of L. monocytogenes. A number of 232
different conditions were chosen for the model with eight
replicates per condition, from which we have eliminated
those that were far removed from the growth/no-growth
range, so that we have considered 305 data to form the
training group, 57%, and 234 data to form the general-
ization group. This experimental design was intended to
explore the survival/death interface. Data were collected at
concentrations of CA and AA between 0% and 0.4% (w/v),
at 4, 7, 10, 15 and 30 1C with a pH range of 4.5–6.
We used two logistic regression methods, a full logistic

model, MLogistic, and a backward selected variables



ARTICLE IN PRESS

Table 8

CCR obtained for the growth limits of L. monocytogenes for MLogistic,

SLogistic and EPUNN models

Models CCRT CCRG

SLogistic 82.30 76.10

Mlogistic 82.30 74.40

EPUNN 92.83 86.72

F.J. Martı́nez-Estudillo et al. / Neurocomputing 72 (2008) 548–561 559
method, SLogistic, using SPSS software [57], in order to
obtain the significant variables of the logistic regression
model by stepwise selection. These methods are considered
because there has been a renewed interest in the use of these
statistical techniques in predictive microbiology (see, for
example, [28]). Then, the classification efficiency of the
training and generalization data sets of the EPUNN
model was compared with MLogistic and SLogistic
models. Table 8 shows a mean, in 30 runs, of the 86.72%
of the CCRG from the EPUNN model, a great improve-
ment on the percentage obtained using the SLogistic
(76.10%) or MLogistic (74.40%) models. These results
are in line with those obtained by Hajmeer and Basheer
[29].

7. Conclusions

We propose a classification method that combines a
nonlinear model based on a special class of feed-forward
neural network, namely PUNNs, and a learning EA that
finds the optimal structure of the model and estimates the
corresponding coefficients. To the best of our knowledge,
this is the first study that applies evolutionary PUNNs to
solve a wide range of multiclassification problems evolving
both structure and weights. A review of the related
literature shows that, up to now, research on product-
units has mainly been applied to solve regression problems.

Our method uses softmax transformation and the cross-
entropy error function. From a statistical point of view, the
approach can be seen as nonlinear multinomial logistic
regression where we use evolutionary computation to
optimize log-likelihood. In fact, we attempt to estimate
conditional class probabilities using a multilogistic model
with nonlinear models given by product-units. The
coefficients that minimize the cross-entropy error function
are estimated by means of an EA. The algorithm proposed
evolves both the weights and the structure of the network
using evolutionary programming. The difficulty entailed in
ascertaining the most suitable network structure at the
outset of a given problem is well known; the evolution of
the structure, however, partially alleviates this problem.
The performance of our approach is estimated by means of
comparison with other methodologies from different points
of view. First, the results obtained in the comparison of
EPUNN with the evolution of traditional feed-forward
neural networks with sigmoidal additive units shows the
capabilities of product-unit models versus the standard
neural network model. Next, we compare our model
EPUNN to a new cooperative co-evolutionary method
(COVNET), and with respect to two recent approaches
based on multiobjective evolutionary neural networks
(MPANN and SPANN). In both cases, the empirical and
statistical results show that EPUNN model performs well
compared to other evolutionary neural network techniques
for classification. Promising results are obtained in terms of
classification accuracy, number of connections and number
of nodes of the classifier. Moreover, we show the best
model for each problem and graphically use two examples
to illustrate the classification task carried out by the PUNN
model as well as the capability of the product-unit to both
capture the interactions between the variables and reduce
the dimensionality of the problem.
Finally, for a nontrivial real problem of predictive

microbiology, the result of the accuracy obtained using
the EPUNN model outperforms the results obtained by
consolidated statistical techniques for classification.
As future work, it would be of interest to state the

relationship among the level of interaction of the data, the
complexity level of each data set and the level of
performance obtained in the product-unit models for the
a corresponding problem.

Acknowledgments

This work has been financed in part by TIN 2005-08386-
C05-02 projects of the Spanish Inter-Ministerial Commis-
sion of Science and Technology (MICYT) and FEDER
funds. The authors would like to thank the HIBRO
Research Group of the University of Córdoba, Spain,
which obtained the experimental data set used in Section
6.2 of this paper. The research of P.A. Gutiérrez has been
subsidized by the FPU Predoctoral Program (Spanish
Ministry of Education and Science), Grant reference
AP2006-01746.

References

[1] H.A. Abbass, Speeding up backpropagation using multiobjective

evolutionary algorithms, Neural Comput. 15 (11) (2003) 2705–2726.

[2] N. Ahamad, E.H. Marth, Behaviour of Listeria monocytogenes at 7,

13, 21 and 35 1C in tryptose broth acidified with acetic citric or lactic

acid, J. Food Prot. 52 (1989) 688–695.

[3] J. Alcala-Fdez, L. Sánchez, S. Garcı́a, M.J.D. Jesus, S. Ventura, J.M.

Garrell, J. Otero, C. Romero, J. Bacardit, V.M. Rivas, J.C.

Fernández, F. Herrera, KEEL: a software tool to assess evolutionary

algorithms for data mining problems, Soft Comput. 2007, accepted

for publication.

[4] P.J. Angeline, G.M. Saunders, J.B. Pollack, An evolutionary

algorithm that constructs recurrent neural networks, IEEE Trans.

Neural Networks 5 (1) (1994) 54–65.

[5] M. Azevedo, A.D. Padua, B. Rodrigues, Improving generalization of

MLPs with sliding mode control and the Levenberg–Marquardt

algorithm, Neurocomputing 70 (7–9) (2007) 1342–1347.

[6] M. Bishop, Neural Networks for Pattern Recognition, Oxford

University Press, Oxford, 1995.

[7] C. Blake, C.J. Merz, UCI repository of machine learning data bases,

1998 /http://www.ics.uci.edu/mlearn/MLRepository.thmlwww.ics.uci.

edu/mlearn/MLRepository.thmlS.

http://www.ics.uci.edu/mlearn/MLRepository.thmlwww.ics.uci.edu/mlearn/MLRepository.thml
http://www.ics.uci.edu/mlearn/MLRepository.thmlwww.ics.uci.edu/mlearn/MLRepository.thml


ARTICLE IN PRESS
F.J. Martı́nez-Estudillo et al. / Neurocomputing 72 (2008) 548–561560
[8] S. Bose, Classification using splines, Comput. Stat. Data Anal. 22

(1996) 505–525.

[9] S. Bose, Multilayer statistical classifiers, Comput. Stat. Data Anal. 42

(2003) 685–701.

[10] W.J. Conover, Practical Nonparametric Statistics, Wiley, New York,

1971.

[11] A. Chandra, X. Yao. DIVACE: diverse and accurate ensemble

learning algorithm, in: Proceedings of the Fifth International

Conference on Intelligent Data Engineering and Automated Learn-

ing, Lecture Notes in Computer Science, vol. 3177, Springer, Berlin,

2004.

[12] A. Chandra, X. Yao, Evolutionary framework for the construction of

diverse hybrid ensembles, in: Proceedings of the 13th European

Symposium on Artificial Neural Networks, d-side, Brugge, Belgium,

2005.

[13] A. Chandra, X. Yao, Ensemble learning using multi-objective

evolutionary algorithms, J. Math. Modelling Algorithms 5 (4)

(2006) 417–445.

[14] A. Chandra, X. Yao, Evolving hybrid ensembles of learning machines

for better generalization, Neurocomputing 69 (7–9) (2006) 686–700.

[15] R. Detrano, A. Janosi, W. Steinbrunn, M. Pfisterer, J. Schmid, S.

Sandhu, K. Guppy, S. Lee, V. Froelicher, International application

of a new probability algorithm for the diagnosis of coronary artery

disease, Am. J. Cardiol. 64 (1989) 304–310.

[16] R. Durbin, D. Rumelhart, Products units: a computationally

powerful and biologically plausible extension to backpropagation

networks, Neural Comput. 1 (1989) 133–142.

[17] A.P. Engelbrecht, A. Ismail, Training product unit neural networks,

Stability Control: Theory Appl. 2 (1–2) (1999) 59–74.

[18] European Commission, Opinion of the scientific committee on

veterinary measures relating to public health on Listeria monocyto-

genes, 1999 /http://www.europa.eu.int/comm/food/fs/sc/scv/out25S.

[19] D.B. Fogel, Using evolutionary programming to greater neural

networks that are capable of playing Tic-Tac-Toe, in: International

Conference on Neural Networks, IEEE Press, San Francisco, CA,

1993.

[20] D.B. Fogel, Evolutionary Computation: Toward a New Philosophy

of Machine Intelligence, IEEE Press, New York, 1995.

[21] D.B. Fogel, A.J. Owens, M.J. Wals, Artificial Intelligence Through

Simulated Evolution, Wiley, New York, 1966.

[22] J. Friedman, Multivariate adaptive regression splines (with discus-

sion), Ann. Stat. 19 (1991) 1–141.

[23] J. Friedman, W. Stuetzle, Proyection pursuit regression, J. Am. Stat.

Assoc. 76 (376) (1981) 817–823.

[24] N. Garcı́a-Pedrajas, C. Hervás-Martı́nez, J. Muñoz-Pérez, Multi-

objective cooperative coevolution of artificial neural networks,

Neural Networks 15 (10) (2002) 1255–1274.

[25] N. Garcı́a-Pedrajas, C. Hervás-Martı́nez, J. Muñoz-Pérez, COVNET:

a cooperative coevolutionary model for evolving artificial neural

networks, IEEE Trans. Neural Networks 14 (3) (2003) 575–596.

[26] S.M. George, B.M. Lund, T.F. Brocklehurst, The effect of pH and

temperature on the initiation of growth of Listeria monocytogenes,

Lett. Appl. Microbiol. 6 (1988) 153–156.

[27] A. Gepperth, S. Roth, Applications of multi-objective structure

optimization, Neurocomputing 69 (7–9) (2006) 701–713.

[28] K.P.M. Gysemans, K. Bernaerts, A. Vermeulen, A.H. Geeraerd,

J. Debevere, F. Devlieghere, J.F.V. Impe, Exploring the performance

of logistic regression model types on growth/no growth data of

Listeria monocytogenes, Int. J. Food Microbiol. 114 (3) (2007)

316–331.

[29] M.N. Hajmeer, I.A. Basheer, Comparison of logistic regression and

neural network-based classifier for bacterial growth, Food Microbiol.

20 (2003) 43–55.

[30] T. Hastie, R.J. Tibshirani, J. Friedman, The elements of statistical

learning, in: Data Mining, Inference and Prediction, Springer, Berlin,

2001.

[31] T.J. Hastie, R.J. Tibshirani, Generalized Additive Models, Chapman

& Hall, London, 1990.
[32] C. Hervás, F.J. Martı́nez-Estudillo, Logistic regression using

covariates obtained by product-unit neural network models, Pattern

Recognition 40 (2007) 52–64.

[33] G.-B. Huang, L. Chen, Convex incremental extreme learning

machine, Neurocomputing 70 (16–18) (2007) 3056–3062.

[34] G.-B. Huang, L. Chen, C.-K. Siew, Universal approximation using

incremental constructive feedforward networks with random hidden

nodes, IEEE Trans. Neural Networks 17 (4) (2006) 879–892.

[35] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine:

theory and applications, Neurocomputing 70 (2006) 489–501.

[36] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: a

new learning scheme of feedforward neural networks, in: Proceedings

of the International Joint Conference on Neural Networks

(IJCNN2004), Budapest, Hungary, 2004.

[37] C.-A. Hwang, M.L. Tamplin, The influence of mayonnaise pH and

storage temperature on the growth of Listeria monocytogenes in

seafood salad, Int. J. Food Microbiol. 102 (2005) 277–285.

[38] A. Ismail, A.P. Engelbrecht, Training products units in feedforward

neural networks using particle swarm optimization, in: V.B. Bajic,

D. Sha (Eds.), Development and Practice of Artificial Intelligence

Techniques, Proceeding of the International Conference on Artificial

Intelligence, Durban, South Africa, 1999.

[39] A. Ismail, A.P. Engelbrecht, Global optimization algorithms for

training product units neural networks, in: International Joint

Conference on Neural Networks IJCNN’2000, Como, Italy, 2000.

[40] A. Ismail, A.P. Engelbrecht, Pruning product unit neural networks,

in: Proceedings of the International Conference on Neural Networks,

Honolulu, Hawaii, 2002.

[41] D.J. Janson, J.F. Frenzel, Training product unit neural networks with

genetic algorithms, IEEE Expert 8 (5) (1993) 26–33.

[42] S. Kirkpatric, C.D.J. Gellat, M.P. Vecchi, Optimization by simulated

annealing, Science 220 (1983) 671–680.

[43] C. Kooperberg, S. Bose, C.J. Stone, Polychotomous regression, J.

Am. Stat. Assoc. 92 (1997) 117–127.

[44] L.R. Leerink, C.L. Giles, B.G. Horne, M.A. Jabri, Learning with

products units, Adv. Neural Networks Process. Syst. 7 (1995)

537–544.

[45] H. Levene, Essays in honor of Harold Hotelling, in: Contributions to

Probability and Statistics, 1960, pp. 278–292.

[46] A.C. Martinez-Estudillo, F.J. Martinez-Estudillo, C. Hervas-Marti-

nez, N. Garcia-Pedrajas, Evolutionary product unit based neural

networks for regression, Neural Networks 19 (4) (2006) 477–486.

[47] A.C. Martinez-Estudillo, C. Hervas-Martinez, F.J. Martinez-Estudillo,

N. Garcia-Pedrajas, Hybridization of evolutionary algorithms and

local search by means of a clustering method, IEEE Trans. Syst. Man

Cybern. 36 (3) (2006) 534–545.

[48] G.F. Miller, P.M. Todd, S.U. Hedge, Designing neural networks

using genetic algorithms, in: Proceedings of the Third International

Conference Genetic Algorithms and their Applications, Morgan

Kaufmann, San Mateo, CA, 1989.

[49] R.H.J.M. Otten, L.P.P.P. van Ginneken, The Annealing Algorithm,

Kluwer, Boston, MA, 1989.

[50] M.A. Potter, K.A. de Jong, Cooperative coevolution: an architecture

for evolving coadapted subcomponents, Evol. Comput. 8 (1) (2000)

1–29.

[51] R. Reed, Pruning algorithms—a survey, IEEE Trans. Neural

Networks 4 (1993) 740–747.

[52] M. Rocha, P. Cortez, J. Neves, Evolution of neural networks

for classification and regression, Neurocomputing 70 (2007)

2809–2816.

[53] K. Saito, R. Nakano, Numeric law discovery using neural networks,

in: Proceedings of the Fourth International Conference on Neural

Information Processing (ICONIP97), 1997.

[54] K. Saito, R. Nakano, Extracting regression rules from neural

networks, Neural Networks 15 (2002) 1279–1288.

[55] M. Schmitt, On the complexity of computing and learning

with multiplicative neural networks, Neural Comput. 14 (2001)

241–301.

http://www.europa.eu.int/comm/food/fs/sc/scv/out25


ARTICLE IN PRESS
F.J. Martı́nez-Estudillo et al. / Neurocomputing 72 (2008) 548–561 561
[56] R. Setiono, L.C.K. Hui, Use of quasi-Newton method in a

feedforward neural-network construction algorithm, IEEE Trans.

Neural Networks 6 (1995) 273–277.

[57] I. SPSS, SPSSr para Windows 11.0.1, SPSS Inc., Chicago, IL,

1989–2001.

[58] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer,

Berlin, 1999.

[59] S. Ventura, C. Romero, A. Zafra, J.A. Delgado, C. Hervás-Martı́nez,

JCLEC: a JAVA framework for evolutionary computation, Soft

Computing—A Fusion of Foundations, Methodologies and Applica-

tions 12 (4) (2007) 381–392.

[60] W. Yan, Z. Zhu, R. Hu, Hybrid genetic /BP algorithm and its

application for radar target classification, in: Proceedings of the IEEE

National Aerospace Electronics Conference, IEEE Press, Piscataway,

NJ, 1997.

[61] X. Yao, Evolving artificial neural network, Proc. IEEE 9 (87) (1999)

1423–1447.

[62] X. Yao, Y. Liu, A new evolutionary system for evolving artificial

neural networks, IEEE Trans. Neural Networks 8 (3) (1997) 694–713.

[63] X. Yao, Y. Liu, Making use of population information in

evolutionary artificial neural networks, IEEE Trans. Syst. Man

Cybern. 28 (3) (1998) 417–425.

[64] Q.-Y. Zhu, A.K. Qin, P.N. Suganthan, G.-B. Huang, Evolutionary

extreme learning machine, Pattern Recognition 38 (2005) 1759–1763.

Francisco J. Martı́nez-Estudillo was born in

Villacarrillo, Jaén. He received the B.S. degree

in mathematics in 1987 and the Ph. D. degree in

Mathematics in 1991, speciality Differential

Geometry, both from the University of Granada,

Granada, Spain. From 1987 to 2002, he devel-

oped his research in non-Euclidean geometry,

Lorentz spaces and maximal surfaces. He is

currently a professor in the Department of

Management and Quantitative Methods in
ETEA, University of Córdoba, Spain. His current research interests

include structure optimization of neural networks, evolutionary algo-

rithms and multiobjective optimization.
César Hervás-Martı́nez was born in Cuenca,

Spain. He received the B.S. degree in statistics

and operating research from the Universidad

Complutense, Madrid, Spain, in 1978 and the

Ph.D. degree in mathematics from the University

of Seville, Seville, Spain, in 1986. He is a

Professor with the University of Córdoba in the

Department of Computing and Numerical Ana-

lysis in the area of computer science and artificial

intelligence and an Associate Professor in the
Department of Quantitative Methods in the School of Economics. His

current research interests include neural networks, evolutionary computa-

tion and the modelling of natural systems.

Pedro A. Gutiérrez-Peña was born in Córdoba,

Spain, in 1982. He received the B.S. degree in

Computer Science from the University of Sevilla,

Spain, in 2006. He is currently working toward

the Ph.D. Degree at the Department of Compu-

ter Science and Numerical Analysis (University

of Cordoba, Spain), in the area of Computer

Science and Artificial Intelligence. His current

interests include neural networks and their

applications, evolutionary computation and hy-
brid algorithms.

Alfonso C. Martı́nez-Estudillo was born in

Villacarrillo, Jaén. He received the B.S. degree

in Computer Science in 1995 and the Ph. D.

degree in 2005, both from the University of

Granada, Granada, Spain. He is currently a

lecturer in the Department of Management and

Quantitative Methods in ETEA, University of

Córdoba, Spain. His current research interests

include neural networks, evolutionary algorithms

and multiobjective optimization.


	Evolutionary product-unit neural networks classifiers
	Introduction
	Related works
	Product-unit neural networks
	Classification problem
	Evolutionary algorithm
	Experiments
	Neural network models comparisons
	Product-units versus additive sigmoidal units
	Comparison with a cooperative co-evolutionary neural network method: COVNET
	Multiobjective neural networks

	A real classification problem: Listeria growth/no growth

	Conclusions
	Acknowledgments
	References


